Note
Go to the end to download the full example code.
Matrix multiplication and Kronecker product.#
EGraph()
from __future__ import annotations
from egglog import *
egraph = EGraph()
class Dim(Expr):
"""
A dimension of a matix.
>>> Dim(3) * Dim.named("n")
Dim(3) * Dim.named("n")
"""
@method(egg_fn="Lit")
def __init__(self, value: i64Like) -> None: ...
@method(egg_fn="NamedDim")
@classmethod
def named(cls, name: StringLike) -> Dim: # type: ignore[empty-body]
...
@method(egg_fn="Times")
def __mul__(self, other: Dim) -> Dim: # type: ignore[empty-body]
...
a, b, c, n = vars_("a b c n", Dim)
i, j = vars_("i j", i64)
egraph.register(
rewrite(a * (b * c)).to((a * b) * c),
rewrite((a * b) * c).to(a * (b * c)),
rewrite(Dim(i) * Dim(j)).to(Dim(i * j)),
rewrite(a * b).to(b * a),
)
class Matrix(Expr, egg_sort="MExpr"):
@method(egg_fn="Id")
@classmethod
def identity(cls, dim: Dim) -> Matrix: # type: ignore[empty-body]
"""
Create an identity matrix of the given dimension.
"""
@method(egg_fn="NamedMat")
@classmethod
def named(cls, name: StringLike) -> Matrix: # type: ignore[empty-body]
"""
Create a named matrix.
"""
@method(egg_fn="MMul")
def __matmul__(self, other: Matrix) -> Matrix: # type: ignore[empty-body]
"""
Matrix multiplication.
"""
@method(egg_fn="nrows")
def nrows(self) -> Dim: # type: ignore[empty-body]
"""
Number of rows in the matrix.
"""
@method(egg_fn="ncols")
def ncols(self) -> Dim: # type: ignore[empty-body]
"""
Number of columns in the matrix.
"""
@function(egg_fn="Kron")
def kron(a: Matrix, b: Matrix) -> Matrix: # type: ignore[empty-body]
"""
Kronecker product of two matrices.
https://en.wikipedia.org/wiki/Kronecker_product#Definition
"""
A, B, C, D = vars_("A B C D", Matrix)
egraph.register(
# The dimensions of a kronecker product are the product of the dimensions
rewrite(kron(A, B).nrows()).to(A.nrows() * B.nrows()),
rewrite(kron(A, B).ncols()).to(A.ncols() * B.ncols()),
# The dimensions of a matrix multiplication are the number of rows of the first
# matrix and the number of columns of the second matrix.
rewrite((A @ B).nrows()).to(A.nrows()),
rewrite((A @ B).ncols()).to(B.ncols()),
# The dimensions of an identity matrix are the input dimension
rewrite(Matrix.identity(n).nrows()).to(n),
rewrite(Matrix.identity(n).ncols()).to(n),
)
egraph.register(
# Multiplication by an identity matrix is the same as the other matrix
rewrite(Matrix.identity(n) @ A).to(A),
rewrite(A @ Matrix.identity(n)).to(A),
# Matrix multiplication is associative
rewrite(A @ (B @ C)).to((A @ B) @ C),
rewrite((A @ B) @ C).to(A @ (B @ C)),
# Kronecker product is associative
rewrite(kron(A, kron(B, C))).to(kron(kron(A, B), C)),
rewrite(kron(kron(A, B), C)).to(kron(A, kron(B, C))),
# Kronecker product distributes over matrix multiplication
rewrite(kron(A @ C, B @ D)).to(kron(A, B) @ kron(C, D)),
rewrite(kron(A, B) @ kron(C, D)).to(
kron(A @ C, B @ D),
# Only when the dimensions match
eq(A.ncols()).to(C.nrows()),
eq(B.ncols()).to(D.nrows()),
),
)
egraph.register(
# demand rows and columns when we multiply matrices
rule(eq(C).to(A @ B)).then(
A.ncols(),
A.nrows(),
B.ncols(),
B.nrows(),
),
# demand rows and columns when we take the kronecker product
rule(eq(C).to(kron(A, B))).then(
A.ncols(),
A.nrows(),
B.ncols(),
B.nrows(),
),
)
# Define a number of dimensions
n = egraph.let("n", Dim.named("n"))
m = egraph.let("m", Dim.named("m"))
p = egraph.let("p", Dim.named("p"))
# Define a number of matrices
A = egraph.let("A", Matrix.named("A"))
B = egraph.let("B", Matrix.named("B"))
C = egraph.let("C", Matrix.named("C"))
# Set each to be a square matrix of the given dimension
egraph.register(
union(A.nrows()).with_(n),
union(A.ncols()).with_(n),
union(B.nrows()).with_(m),
union(B.ncols()).with_(m),
union(C.nrows()).with_(p),
union(C.ncols()).with_(p),
)
# Create an example which should equal the kronecker product of A and B
ex1 = egraph.let("ex1", kron(Matrix.identity(n), B) @ kron(A, Matrix.identity(m)))
rows = egraph.let("rows", ex1.nrows())
cols = egraph.let("cols", ex1.ncols())
egraph.run(20)
egraph.check(eq(B.nrows()).to(m))
egraph.check(eq(kron(Matrix.identity(n), B).nrows()).to(n * m))
# Verify it matches the expected result
simple_ex1 = egraph.let("simple_ex1", kron(A, B))
egraph.check(eq(ex1).to(simple_ex1))
ex2 = egraph.let("ex2", kron(Matrix.identity(p), C) @ kron(A, Matrix.identity(m)))
egraph.run(10)
# Verify it is not simplified
egraph.check_fail(eq(ex2).to(kron(A, C)))
egraph
Total running time of the script: (0 minutes 0.022 seconds)